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Significance Testing
Significance testing is the process of using statistics to determine how well data fit a 

particular pattern.  Patterns can be very simple, such as “rates of obedience in the authority-
present condition will be higher than rates of obedience in the authority-absent condition” or 
they can be more complex.  The key to understanding significance testing is to understand that 
the strength of each pattern can be measured by a test statistic.  What is a test statistic?  First, 
let's look at what a statistic is.  A statistic is a number representing some aspect of a group of 
numbers.  For example, a mean is a statistic measuring “central tendency” in a group of 
numbers.  The mean of the numbers 2, 7, and 9 is (2+7+9)/3 = 6.  Another common statistic is 
standard deviation, which describes how spread out a group of numbers are.  The numbers 2, 
7, and 9 have a standard deviation of 3.6, while the numbers 4, 7, and 8 have a standard 
deviation of 2.1.  These values reflect the fact that 2, 7, and 9 are more spread out than 4, 7, 
and 8.  Both the mean and the standard deviation are statistics because they are numbers 
describing properties of groups of numbers.  

Test Statistics
A test statistic is a number that represents the strength of a pattern in a group of 

numbers.  It is a statistic because it reflects some property of a group of numbers, but unlike 
most statistics, it is sensitive to a particular pattern.  There are many test statistics, and each is 
sensitive to a different pattern, but in general, test statistics get farther from zero when their 
pattern is present.  

Test statistics are very useful for two reasons:  1) simplification:  they enable 
researchers to express the strength of a pattern with a single number, and 2) falsifiability.  If a 
hypothesis is falsifiable, then it is possible to test the hypothesis in a way that either supports 
or discredits the hypothesis.   It is possible to use a test statistic to make a decision about 
whether or not a pattern is present.  To understand how this is done, we must first discuss the 
concept of statistical significance.

Statistical Significance
Let's say that you are a detective and you get reports of a crooked gambling 

establishment.  People are betting on a coin toss in which they gain one dollar for every heads 
and lose one dollar for every tails.  The allegation is that the coin toss is somehow rigged to 
come up tails more than heads.  This allegation becomes your experimental hypothesis:  the 
pattern you expect to find.  If your hypothesis is supported, you will charge the establishment 
with a crime.

The first decision you need to make is, how confident do I need to be before I conclude 
that the coin toss is rigged?  If you observe a thousand coin tosses, find 538 tails, and compute 
that 538-or-more-tails would occur less than 1 in 100 times with a fair coin, would you feel 
confident charging the organization with a crime?  What if you find 549 tails, which would occur 
less than 1 in 1000 times with a fair coin?  The probability that you establish (e.g., 1 in 100, 1 in 
1000) to make your decision of whether your hypothesis is supported or not supported is called 
the alpha level.  In most psychological research, where the consequences of being wrong are 
not severe, the alpha level is set at either 0.05 or 0.01, which corresponds to either a 1 in 20 or 
1 in 100 chance of being wrong:  saying the coin is rigged when really it is fair and the string of 
tails was just bad luck.  If you are conducting research where the consequences of being wrong 
are severe, such as saying a drug is safe when it might be deadly, you would set your alpha 
level lower, to perhaps 0.0001.  So, your first step is to set the alpha level of your test.

Step two is to find a test statistic.  You need a number that will reflect the strength of the 
pattern you suspect.  In this case, the pattern you are observing is “number of tails” and you can 
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use that number as your test statistic.  High values will indicate a stronger pattern.  Let's say 
you observe 1000 coin tosses and 549 of those are tails.  Your test statistic in this case is 549.

Step three is where the magic happens:  computing the probability of your test statistic. 
More specifically, you want to know the probability of your test statistic, 549 tails out of 1000 
coin tosses, occurring with a fair coin.  If that probability is sufficiently low (below your alpha 
level), you will reject the idea that the toss is fair and conclude that it is rigged.  But wait, do you 
want to know the probability of getting exactly 549 tails?  It's probably pretty unusual to flip a 
coin 1000 times and get any one number, even 500.  No, you want a sense of how unusual 549 
is; how much it differs from the expected number of 500 tails for a fair coin.  To answer this 
question, you could do 1000 coin tosses with a coin you know is fair and record the number of 
tails, then repeat that procedure ten million times, each time writing down the number of tails. 
Sometimes, you would get more than 549 tails.  Most of the time, you would get around 500 
tails.  If you arranged the number of tails from smallest to largest and counted how often each 
result occurred, you would have a good sense of how unusual your obtained result of 549 is.  If 
you drew a line at 548 tails and counted the number of results above 548, then divided that 
number by ten million, you would know the percentage of times that your result of 549 tails, or 
one more extreme than yours, occurs with a fair coin just by chance.  That percentage would be 
the answer to your question:  the probability of obtaining your test statistic, or one more 
extreme, just by chance.  This number is called statistical significance.  It is often written as 
the italicized lower-case letter p, or p-value, for probability value.  If it is below your alpha level, 
you would conclude that the coin toss is rigged.

The example given in the previous paragraph presents the logic behind all significance 
testing.  To test your hypothesis that the coin toss is rigged, you begin by assuming a fair coin 
and seeing how rarely your results would be obtained under that assumption.  The hypothesis 
you want to test is called the experimental hypothesis, while the assumption of no effect is 
called the null hypothesis.  When you generate a large number of test statistics under the null 
hypothesis (as you did by repeating your coin toss experiment with a fair coin ten million times), 
the resulting distribution of test statistics is called the null distribution.  By computing the 
percentage of the null distribution that is equal to or more extreme than your test statistic, you 
find the p-value.  If the p-value is less than the alpha level, you would “reject the null hypothesis” 
and accept your experimental hypothesis.

One part of the process above seems terribly unwieldy:  running millions of replications 
of a test under the null hypothesis to create the null distribution.  In practice, researchers rely on 
mathematical approximations of this process.  There is a formula for determining the exact 
probability of a 2-outcome event (heads or tails) with known probability (a fair coin comes up 
heads 50% of the time) and a given number of trials (1000 coin flips).  It is called the binomial 
function.  Each test statistic has a similar function that statistics programs use to estimate the 
probability of obtaining a given test statistic.

What does statistical significance tell you?  Does it tell you the probability that a result 
will be repeated?  No.  Does it tell you the probability that the null hypothesis is true?  No1. 
Does it tell you that a result is important?  No.  Statistical significance only tells you that a result 
is unlikely given the assumption of no effect (the null hypothesis).  Regrettably, many people 
use the p-value as an indication of importance.  To correct this problem, researchers have 
recommended additional ways to evaluate test statistics, such as effect size.

1 Statistical significance gives you the probability of a test statistic (T), given the null hypothesis (H0).  Written as a 
conditional probability, it is p(T|H0).  In contrast, the probability that the null hypothesis is true is p(H0).  These can 
be very different.
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Effect Size
Whereas statistical significance (the p-value) tells you how unlikely a test statistic is, 

effect size reflects the strength of the pattern that the test statistic is designed to detect.  As 
mentioned in the reading on the scientific literature in psychology, meta-analyses use effect size 
to combine the results of many studies because all test statistics (t, r, F, etc.) can be converted 
to effect size.  Several statistics have been developed to express effect size, but three of the 
most popular are r, η2 (eta squared), and d.  

r.  r is on the same scale as the Pearson correlation coefficient r, ranging from -1 to +1 
with 0 indicating no effect.  It is most useful if the variables you are comparing are both 
continuous, that is, capable of being expressed by numbers along a continuum.  For example, 
exposure to media violence exists along a continuum from none to a great deal, and degree of 
aggression also exists along a continuum from mild to severe.  Thus, you could express the 
effect of exposure to media violence on aggression using an r statistic.  Research on the effects 
of media violence on aggression finds effect sizes in the r = 0.2 to 0.3 range (Anderson et al., 
2003).

 η2.  Eta squared is analogous to r2 but is used for t-tests and ANOVA.  Like r2, it reflects 
the percentage of variability in the dependent variable that can be explained by the independent 
variable.

d.  d is generally used to describe the strength of the difference between two groups.  It 
represents the number of standard deviations that separate the means of two groups.  A d of 
1.0 indicates that two means differ by one standard deviation, and a d of 0.5 indicates that two 
means differ by half a standard deviation.  For most people, those units don't mean much, so 
Cohen (1988) suggests thinking about d in terms of percentiles.  Consider two groups, 
experimental and control.  With a d of 0, the mean of the experimental group exactly overlaps 
with the mean of the control group.  At d = 0.8, the mean of the experimental group would fall at 
the 79th percentile of the control group, meaning that 79% of the scores of the control group are 
below the mean of the experimental group.  At d = 1.7, the mean of the experimental group is at 
the 95.5th percentile.  

Cohen (1988) offers the cutoff values in the table below as general guidelines for 
evaluating the strength of effect sizes.

Table 1

Cohen's (1988) Recommended Interpretations of Effect Size

r d
Small .10 .2

Medium .24 .5

Large .37 .8
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Four Test Statistics
Psychology is mostly concerned with four test statistics, which are known by their symbols or 
letters:  χ2 (Chi Square, pronounced “kai square”), r, t, and F.  

Chi Square (χ2)

The Chi Square test statistic measures the degree to which one categorical variable is 
distributed disproportionately across one or more other categorical variables.  A categorical 
variable is a nominal-scale variable, a variable that can take on values in distinct categories 
(such as “Egyptian” or “Lebanese”) that cannot be expressed as points along a continuum (as 
would be the case with a variable such as income or temperature).  When we talk about it being 
distributed across another variable, we mean that we are looking at how often particular 
combinations of two categorical variables occur.  For example, let's say we're studying whether 
support for gun control varies by political party.  We call 100 registered Democrats and 100 
registered Republicans and ask each person whether they think there should be more 
restrictions on gun use (“for gun control”) or fewer restrictions (“against gun control”).  We obtain 
the data in Table 2.

 
Table 2.
Attitudes toward Gun Control by Political Party

Gun Control
For gun control Against gun control

Political Party
Democratic 70 30
Republican 20 80

When we talk about one variable being distributed disproportionately across another variable, 
we mean that the distribution of gun control opinion is not in the same proportion for Democrats 
(70:30) as it is for Republicans (20:80).  To make sense of nominal-scale data, it is often useful 
to convert them to percentages.  For the data in Table 1, we see that gun control is supported 
by 70% of our Democratic sample but only 20% of our Republican sample.  Our next question is 
whether the difference between 70% and 20% is a significant difference; that is, whether the 
difference between 70% and 20% is so large that it is unlikely to occur by chance.  Given the 
data above, we would obtain a χ2 value of 48 with 1 degree of freedom, which would be 
significant at p < .001.  Thus, we could conclude that Democrats were significantly more likely to 
be for gun control than Republicans.  In general, Chi Square is the test statistic you would use if 
you are comparing two percentages and testing whether they are different.

Correlation (r)

Correlation is a statistical procedure used to measure the degree of linear relation 
between two variables.  A linear relation is one that can be well described by a straight line. 
Figure 1 shows a linear relation between temperature and aggression.  In these hypothetical 
data, participants are placed into rooms of different temperatures and their aggression is 
measured.  Each data point refers to the same person, and each data point represents two 
pieces of information about that person:  the temperature of their room and their level of 
aggression.  Correlation requires that both of your variables are on an underlying continuum: 
interval- or ratio-scale.  Correlation is often reported as a lower-case italicized “r”:  r.   r ranges 
from -1 to +1, with scores farther from zero indicating a stronger relation.  The sign of r (whether 
it is positive or negative) indicates the direction of the relation between the two variables. 
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Positive correlations indicate that high scores on one variable (temperature) tend to be found 
with high scores on another variable (aggression), and low scores on one variable tend to be 
found with low scores on the other variable.  In the data presented in Figure 1, the correlation is 
+0.94, a very strong correlation because it is close to +1.  

Figure 2 displays a correlation of r = +0.85. 
Compared to Figure 1, the data in Figure 2 are 
not as concentrated around a straight line; they 
are more spread out.  As data points become 
less and less well-described by a straight line, 
the correlation decreases.

A negative correlation indicates that high 
scores on one variable tend to be found with low 
scores on the other variable.  Figure 3 shows an 
example of a negative correlation: the relation 
between temperature and the sales of hot 
drinks.  As the temperature increases, people 
buy fewer hot drinks:  high values on one 
variable are found with lower values on the 
other.

One way to convert the correlation coefficient r into a more usable form is to square it, creating 
r2.  r2 is the percentage of one variable that can be explained, accounted for, or predicted from a 
linear relation with the other variable.  If the correlation between temperature and aggression is 
r = +.85, then r2 = 0.72, meaning that temperature has accounted for 72% of aggression.  This 
means that 28% is unaccounted for due to measurement error and alternative causes of 
aggression.  Accounting for 72% of any human behavior would be a monumental achievement 
given the myriad causes of behavior.  Many psychological correlations are around r = +0.3, 
which means that they account for only about 9% of behavior.  Although it may not seem like 
much, being able to predict 9% of behavior can be an enormous advantage when you are 
dealing with large numbers of people, such as customers on eBay or visitors to Disneyworld.

Independent t-test

An independent t-test is used to compare the means of two separate (independent) 
groups of people.  It is used when your independent variable is nominal-scale and has two 
levels (such as “experimental” and “control”) and when your dependent variable is on a 
continuum and is interval- or ratio-scale (such as “anxiety”).  When the two groups have means 
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that are exactly equal, t is zero.  As the means of the two groups diverge, t increases.  The 
formula for t begins by subtracting the mean of one group from the mean of the other group. 
Thus, if the first group has a higher mean, t will be positive, but if the second group has a higher 
mean, t will be negative.  

t gets larger as the magnitude of the difference between means increases, and gets 
smaller as the variability in scores within each group increases.  This means that when scores 
are very spread out within each group, t will be smaller and you will be less likely to obtain a 
statistically significant result.  If you were comparing the running times of two groups of Olympic 
athletes, one wearing a special shoe and one wearing a regular shoe, there would be very little 
variability within each group; each runner would probably be within a few hundredths of a 
second of each other.  Under those circumstances, you would be more likely to find a 
statistically significant difference between the groups because the variability within groups would 
be small.  Constrast that situation to a comparison of two groups of first-graders, one wearing 
the special shoe and one not.  The running times for the first graders may differ by several 
minutes, spreading out the scores so much that it would not be possible to see the effects of the 
running shoe.

ANOVA

ANOVA stands for ANalysis Of VAriance.  It is not a test statistic per se, but rather a 
statistical procedure.  Variance consists of the differences between scores.  Greater differences 
among scores is greater variance.  Analysis refers to a “cutting into pieces” of the variance.  In 
this case, our goal is to divide variance into two major pieces:  the variance within each group 
and the variance between the groups.  Let's say you survey ten members each of three 
fraternities and ask them how satisfied they are with college.  The differences among the 
responses within each fraternity comprise the within-group variance.  The differences between 
the means of the three groups comprise the between-groups variance.  The test statistic for 
ANOVA is an F and it is the ratio of between-group variance to within-group variance.  As 
between-groups variance increases and within-group variance decreases, F gets larger and is 
more likely to indicate a significant difference among the means of the groups.  

ANOVA requires that your independent variable is nominal-scale, but unlike the 
independent t-test, ANOVA can handle more than two groups.  Like the t-test, the dependent 
variable for ANOVA must be continuous and on an interval or ratio scale.

One-way ANOVA refers to ANOVA involving a single independent variable, such as 
which fraternity a participant is in.  Factorial ANOVA involves more than one independent 
variable, such as a study investigating both the effects of being Greek or independent and the 
effects of gender.  In that case, the experimental design would require a two-way ANOVA 
because there are two independent variables:  Greek status and gender.

Summary of test procedures

The appropriate test is determined by the kind of data you have and the pattern you want to look 
for, as outlined in Table 3.
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Table 3

Type of Data Required for Each Test

IV DV Test Example
Nominal Nominal χ2 Do a higher percentage of Republicans than 

Democrats favor the death penalty?
Interval Interval r As temperature increases, are violent crimes more 

likely?
2 categories Interval t Are males more aggressive than females?
2+ categories Interval ANOVA Do four fraternities differ in their average GPA?

Type I and Type II Errors
Type I and Type II errors refer to two possible ways that the conclusions from statistical 

significance tests can be mistaken.  Perhaps the easiest way to explain this is to begin with the 
chart in Table 4, which shows the relationship between the “true state of nature” and your 
conclusions.  Recall that the null hypothesis is the assumption of no effect.  In Table 4, we see 
that there are two ways to be correct:  to reject the null when there is an effect; and not to reject 
the null when there is no effect.  There are also two ways to make mistakes, and these are the 
Type I and Type II errors.  A Type I error occurs when we reject the null hypothesis and claim 
there is an effect even though the true state of nature is that there is no effect.  Thus, a Type I 
error occurs when p is below .05 just by chance, not because there is a real effect.  Here we 
see another definition of statistical significance (the p-value):  the risk of making a Type I error. 
A Type II error occurs when we find that p is above .05 and conclude that there is no significant 
relationship when, in fact, there is a real relationship and we just didn't detect it.  

Table 4

Explaining Type I and Type II Errors

Your conclusions
Do not reject null Reject null, 

conclude He

True state of nature

Null is true (there 
really is no effect)

Say no effect when 
there is no effect 
(correct)

Type I Error:  False 
positive (p-value = 
prob. of making a 
Type-I Error)

Null is false (there 
really is an effect)

Type II Error:  False 
negative 

Say there is an effect 
when there is an 
effect (correct)

“Accepting” the Null Hypothesis?
The null hypothesis is a prediction of no effect.  If your analysis yields p > .05 and you 

have set .05 as your alpha level, you cannot reject the null hypothesis.  Why don't we say 
“accept” the null hypothesis rather than the more cumbersome “do not reject”?  The reason is 
that “to accept the null hypothesis” would be to state as empirical fact that there is no effect, 
when all you really know is that you do not have sufficient evidence of an effect.  It may be that 
an effect exists but your measures were not sensitive enough to pick it up or you did not have 
enough participants.  For example, a researcher studying gender differences in preferences for 
romantic films collects data from 10 men and 10 women and finds that the mean preference 

by Bill Altermatt, last updated Jan 24, 2008



Significance Testing page 8

rating for romantic films is higher for women than for men, but this difference is not significant at 
p = .08.  The researcher should not conclude that there is no gender difference (accept the null 
hypothesis), but rather should conclude that no gender difference was found.  

(Statistical) Power
In the context of statistics, power refers to the probability of achieving a specific p-value, 

given a specified effect size, sample size, and variability in the dependent variable.  Thus, 
power is a probability, a number between 0 and 1.  Power increases as effect size and sample 
size increase and as variability in the dependent variable decreases.  For example, consider a 
study that compares the means of two groups of 10 people each.  Assume that the mean of one 
group is a 4 and the mean of the other group is a 4.5 and that the variability of each group is a 
standard deviation of 1.0.  With a p-value cutoff of .05, the power of that study is only .201.  That 
is, there is only a 20.1% probability that the study will achieve a p-value less than .05.  That 
information might make you pessimistic about actually conducting the study because even if 
everything goes smoothly, you will only find p < .05 20.1% of the time.  If the number of people 
in each group is increased to 100, power in the study just mentioned jumps to 0.942.  This 
shows that power is influenced by sample size and tells you why researchers often try to obtain 
as many participants as possible.  If we keep sample size in each group to 10 and increase our 
estimate of the difference between the means to 1.0 (by predicting that the means will be 4.0 for 
one group and 5.0 for the other, for example), power jumps to 0.609.  This shows that larger 
effects are easier to detect than smaller effects.  A common application of statistical power is in 
computing the necessary sample size to have power at a certain level.  For example, if you 
would like to have an 80% probability of obtaining p < .05, how many people would you need in 
your sample?  To answer that question, you need reasonably accurate estimates of effect size 
and variability, such as from an earlier study.  With that information, you could learn that to have 
80% power, you would need only 20 participants, in which case you should do the study, or you 
could learn that you would need 2,000 participants, in which case you might give up.

Summary: Definitions of Statistical Significance
In this reading, we have encountered at least five ways to define statistical significance. 

All of them are equivalent and are just different ways of saying the same thing.  Below is a 
summary of these definitions.  Statistical significance is the probability of...

1. ...obtaining a test statistic as large or larger than the one you obtained, just by 
chance (as the result of a completely random process)

2. ...any observed difference between groups (or correlation between variables) being 
due to a random organization of the data

3. ...making a Type I (false positive) error
4. ...concluding that an effect exists, when in fact no effect exists
5. ...rejecting the null hypothesis (and accepting the experimental hypothesis), when 

the null hypothesis should not be rejected
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